A new human-scale fast field-cycling MRI system for clinical applications

Peter J. Ross¹, Lionel M. Broche¹, Gareth R. Davies¹, and David J. Lurie¹

¹Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, United Kingdom

Synopsis

Fast-field cycling MRI is a novel technique that involves cycling the main magnetic field during image acquisition. By doing this, information on the magnetic field dependence of parameters such as the T₁ relaxation time can be investigated and exploited as a new form of endogenous image contrast. In this abstract we present progress on a new human-scale fast field-cycling MRI system with a detection field of 0.2 T.

Purpose

Fast Field-Cycling MRI (FFC-MRI) is a novel MRI technique in which the external magnetic field is switched during the imaging experiment. By doing this, FFC-MRI grants access to information which is invisible to conventional MRI scanners, including the variation of T₁ with magnetic field. These measurements, known as T₁-dispersion, exhibit great promise as a new form of endogenous image contrast, and may have application in the early diagnosis of a range of diseases including osteoarthritis, cancer and neurodegeneration. Furthermore, T₁-dispersion at ultra-low magnetic fields (less than 10 kHz proton Larmor frequency), measured by FFC-MRI, can offer new insight into the molecular dynamics and structure of tissues and is a largely unexplored area of study in in-vivo imaging. The construction of an MR imaging system capable of rapidly switching magnetic fields, and reaching ultra-low fields requires novel magnets, power supplies and control electronics. Here we describe progress on a new whole-body human sized FFC imaging system and present images obtained from normal volunteers.

Methods

The magnet (Tesla Engineering Ltd, Storrington, UK) is of a resistive design with a length of 2 m and an inner bore diameter of 500 mm. The main magnet is comprised of three identical coils, angularly offset from each other by 120° embedded in epoxy resin. The magnet includes three conventional gradient coils and eight shim coils, which provide shimming up to 4th order. Each of the B0 coils is driven by a rack of 6 current amplifiers (IECO, Helsinki, Finland). Each amplifier rack is capable of supplying a maximum current of 600 A, so the total current supplied to the magnet is 1800 A, corresponding to a maximum field strength of 0.2 T (8.52 MHz proton Larmor frequency). The magnet power supply incorporates a zero-flux current transducer (Danfysik A/S, Denmark) in a feedback loop which is configured for a current stability of approximately 1 ppm. The system can switch between zero and maximum field in 20 ms, corresponding to a maximum dB/dT of 10 T/s. The scanner is also equipped with a set of three orthogonal 2-metre wide square Helmholtz coils (Figure 1) centred on the isocentre of the magnet to provide earth's field cancellation, allowing a minimum B₀ of less than 1 μT (42 Hz) to be achieved over a 30 cm DSV. The gradients and RF system are controlled by a commercial MRI console (MR Solutions Ltd, Guildford, UK) while the main magnet coil, shim coils and earth-field cancellation coils are controlled by a dedicated computer running in-house software written in Labview (National Instruments, Austin, US). The main magnetic field is set and controlled by a 16-bit, high-precision DAC which provides a field resolution of 3 μT. Synchronisation between the main console and the Labview-controlled PC is accomplished using TTL lines with timing accuracy on the order of 100 ns.

Results

The system has been fully commissioned and is now capable of in-vivo imaging using its full field range. Figure 2 shows an example of an image of the head of a human volunteer obtained at an evolution field of 100 mT.

Discussion

The novel system design described here will allow us to explore the unique T₁ dispersion contrast made available by FFC-MRI in greater detail than was possible using our previous system which had detection at 0.06 T. Furthermore, the use of a purely resistive magnet design allows us to access ultra-low magnetic fields along with the associated information on slow molecular dynamics. Future work will concentrate on identifying how this newly accessible region of the T₁ dispersion curve can be exploited for clinical diagnosis.

Acknowledgements

We acknowledge support for this project from the European Union, under Horizon-2020 project 668119, “IDentIFY”

References


Figures
Figure 1: The FFC-MRI system and earth's field cancellation coils.

Figure 2: Image from a volunteer's head, obtained at an evolution field of 100 mT.